
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 1755
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Minimum Spanning Tree using Heap
Maumita Chakraborty 1,Rahul Singh 2, Ruchi Mehta 3

Abstract— Minimum spanning trees are one of the most important primitives used in graph algorithms. They find applications in numerous
fields ranging from taxonomy to image processing to computer networks. In this paper, we present a different approach or algorithm to find
the minimum spanning tree (MST) for large graphs based on boruvka’s algorithm. We analyze the CPU timing of the algorithm and
compare it with the existing algorithms of finding MST under certain assumptions. Finally, we compare the performance of the three
algorithms on a set of graph instances.

Keywords: graphs, weighted graph, undirected graphs, minimum spanning tree, union-find algorithm, kruskal’s algorithm, prim’s algorithm,
heap, stack,boruvka’s algorithm.

——————————  ——————————

1 INTRODUCTION
Graph is a set of edges and vertices represented as G (V, E)

and tree is a connected graph having n vertices and n-1 edges.
Minimum spanning tree is a connected subset of graph having
n vertices and n-1 edges so basically it is a tree but the total
weight of the minimum spanning tree is always less than or
equal to weight of any possible subset of connected graph
having n vertices and n-1 edges which is a tree.

Here we are showing some application for minimum spanning
trees. One example would be a telecommunications company
or electrical companies which are trying to lay off cables in
city or town. To connect the whole city or the part of the city,
there must be a graph representing which points are
connected by which one along the direction of some path.
Some of those paths might be more expensive, because they
are longer, or might be some difficulty in laying the cables;
these paths would be represented by edges with larger
weights. Currency is an acceptable unit for edge weight graph
– there is no requirement for edge lengths to obey normal
rules of geometry such as the triangle inequality. A spanning
tree for that graph would be a subset of those paths that has no
cycles but still connects to every point directly or via some
other point; there might be several spanning trees possible.
A minimum spanning tree would be one with the lowest total
cost, thus would represent the least expensive path for laying
the cable. Boruvka’s algorithm[1] was also invented to
construct an efficient electric network.
The proposed algorithm is the implementation of Boruvka’s
algorithm and hence could be said as the extension of the
mentioned algorithm.

2. RELATED WORK
2.1 PRIM’S ALGORITHM:
In computer science, Prim's algorithm [2] is basically a greedy
algorithm that is used to find a minimum spanning tree for
a weighted undirected graph. What we can say is that it finds that
subset of edges forming a tree that includes all the vertices, such that
the total weight of edges is kept minimum.
The algorithm starts by taking any arbitrary vertex as the starting
vertex and then adding the edges in such a manner that they produce
the minimum weight.

The algorithm may informally be described as performing the
following steps:

1. Initialize a tree with a single vertex, chosen arbitrarily
from the graph.

2. Grow the tree by one edge: of the edges that connect
the tree to vertices not yet in the tree, find the
minimum-weight edge, and transfer it to the tree.

3. Repeat step 2 (until all vertices are in the tree).

In more detail, it may be implemented following the pseudo
code below [2].

1. Associate with each vertex v of the graph a
number C[v] (the cheapest cost of a connection to v)
and an edge E[v] (the edge providing that cheapest
connection). To initialize these values, set all values
of C[v] to +∞ (or to any number larger than the
maximum edge weight) and set each E[v] to a
special flag value indicating that there is no edge
connecting v to earlier vertices.

2. Initialize an empty forest F and a set Q of vertices that
have not yet been included in F (initially, all vertices).

3. Repeat the following steps until Q is empty:
a. Find and remove a vertex v from Q having

the minimum possible value of C[v]
b. Add v to F and, if E[v] is not the special flag

value, also add E[v] to F
c. Loop over the edges vw connecting v to other

vertices w. For each such edge, if w still
belongs to Q and vw has smaller weight
than C[w], perform the following steps:

i. Set C[w] to the cost of edge vw
ii. Set E[w] to point to edge vw.

4. Return F

As described in the above pseudo code, the starting vertex for
the algorithm will be chosen arbitrarily, because the first
iteration of the main loop of the algorithm will have a set of
vertices in Q that all have equal weights, and the algorithm
will automatically start a new tree in F when it completes a

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Flag_value

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 1756
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

spanning tree of each connected component of the input
graph. The algorithm may be modified to start with any
particular vertex s by setting C[s] to be a number smaller than
the other values of C (for instance, zero), and it may be
modified to only find a single spanning tree rather than an
entire spanning forest (matching more closely the informal
description) by stopping whenever it encounters another
vertex flagged as having no associated edge.

Different variations of the algorithm differ from each other in
how the set Q is implemented: as a simple linked
list or array of vertices, or as a more complicated priority
queue data structure. This choice leads to differences in
the time complexity of the algorithm. In general, a priority
queue will be quicker at finding the vertex v with minimum
cost, but will entail more expensive updates when the value
of C[w] changes.

TIME COMPLEXITY:
The time complexity of Prim's algorithm depends on the
data structures used for the graph and for ordering the
edges by weight, which can be done using a priority
queue.
The following table shows the typical choices:

A simple implementation of Prim's, using an adjacency
matrix or an adjacency list graph representation and linearly
searching an array of weights to find the minimum weight
edge, to add requires O(|V|2) running time. However, this
running time can be greatly improved further by
using heaps to implement finding minimum weight edges in
the algorithm's inner loop.

A first improved version uses a heap to store all edges of the
input graph, ordered by their weight. This leads to an O(|E|
log |E|) worst-case running time. But storing vertices instead
of edges can improve it still further. The heap should order the
vertices by the smallest edge-weight that connects them to any
vertex in the partially constructed minimum spanning
tree (MST) (or infinity if no such edge exists). Every time a
vertex v is chosen and added to the MST, a decrease-key

operation is performed on all vertices w outside the partial
MST such that v is connected to w, setting the key to the
minimum of its previous value and the edge cost of (v,w).

Using a simple binary heap data structure, Prim's algorithm
can now be shown to run in time O(|E| log |V|) where |E| is
the number of edges and |V| is the number of vertices. Using
a more sophisticated Fibonacci heap, this can be brought
down to O(|E| + |V| log |V|), which is asymptotically
faster when the graph is dense enough that |E| is ω(|V|),
and linear time when |E| is at least |V| log |V|. For graphs of
even greater density (having at least |V|c edges for
some c > 1), Prim's algorithm can be made to run in linear time
even more simply, by using a d-ary heap in place of a
Fibonacci heap.

2.2 KRUSKAL’S ALGORITHM
Kruskal's algorithm [3] is a minimum-spanning-tree
algorithm which finds an edge of the least possible weight that
connects any two trees in the forest. It is a greedy
algorithm in graph theory as it finds a minimum spanning
tree for a connected weighted graph adding increasing cost
arcs at each step .This means it finds a subset of the edges that
forms a tree that includes every vertex, where the total weight
of all the edges in the tree is minimized. If the graph is not
connected, then it finds a minimum spanning forest (a minimum
spanning tree for each connected component).
This algorithm first appeared in Proceedings of the American
Mathematical Society, pp. 48–50 in 1956, and was written
by Joseph Kruskal [4].

Algorithm
1. Create a forest F (a set of trees), where each vertex in the
graph is a separate tree.
2. Create a set S containing all the edges in the graph
3. While S is nonempty and F is not yet spanning
4. Remove an edge with minimum weight from S
5. If the removed edge connects two different trees then add it
to the forest F, combining two trees into a single tree

6. At the termination of the algorithm, the forest forms a
minimum spanning forest of the graph. If the graph is
connected, the forest has a single component and forms a
minimum spanning tree

Pseudo code [3]
The following code is implemented with disjoint-set data
structure:
KRUSKAL (G):
1. A=∅
2. for each v ∈ G.V:
3. MAKE-SET (v)

[2] Table 1: Time complexity using different data structure
Minimum edge weight data
structure

Time complexity

adjacency matrix, searching O(|V|2)

binary heap and adjacency
list

O((|V| + |E|) log |V|) = O(
|E| log |V|)

Fibonacci
heap and adjacency list

O(|E| + |V| log |V|)

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Time_complexity
https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Adjacency_matrix
https://en.wikipedia.org/wiki/Adjacency_matrix
https://en.wikipedia.org/wiki/Adjacency_matrix
https://en.wikipedia.org/wiki/Adjacency_list
https://en.wikipedia.org/wiki/Big-O_notation
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Binary_heap
https://en.wikipedia.org/wiki/Big-O_notation
https://en.wikipedia.org/wiki/Fibonacci_heap
https://en.wikipedia.org/wiki/Big-O_notation
https://en.wikipedia.org/wiki/Asymptotic_computational_complexity
https://en.wikipedia.org/wiki/Asymptotic_computational_complexity
https://en.wikipedia.org/wiki/Asymptotic_computational_complexity
https://en.wikipedia.org/wiki/Dense_graph
https://en.wikipedia.org/wiki/Big-O_notation#Family_of_Bachmann.E2.80.93Landau_notations
https://en.wikipedia.org/wiki/Linear_time
https://en.wikipedia.org/wiki/D-ary_heap
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
https://en.wikipedia.org/wiki/Binary_heap
https://en.wikipedia.org/wiki/Adjacency_list
https://en.wikipedia.org/wiki/Adjacency_list
https://en.wikipedia.org/wiki/Adjacency_list
https://en.wikipedia.org/wiki/Fibonacci_heap
https://en.wikipedia.org/wiki/Fibonacci_heap
https://en.wikipedia.org/wiki/Adjacency_list

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 1757
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

4. For each (u, v) in G.E ordered by weight (u, v),
increasing
5. If FIND-SET (u) ≠ FIND-SET (v):
6. A = A ∪ {(u, v)}
7. UNION (u, v)
8. Return A

Complexity
Kruskal's algorithm can be shown to run in O(E log E) time, or
equivalently, O(E log V) time, where E is the number of edges
in the graph and V is the number of vertices, all with simple
data structures. These running times are equivalent because:

• E is at most V2 and log V2 = 2 logV is O(log V).
• Each isolated vertex is a separate component of the

minimum spanning forest. If we ignore isolated vertices
we obtain V ≤ 2E, so log V is O(log E).

We can achieve this bound as follows: first sort the edges by
weight using a comparison sort in O(E log E) time; this allows
the step "remove an edge with minimum weight from S" to
operate in constant time. Next, we use a disjoint-set data
structure (Union & Find) to keep track of which vertices are in
which components. We need to perform O(V) operations, as in
each iteration we connect a vertex to the spanning tree, two
'find' operations and possibly one union for each edge. Even a
simple disjoint-set data structure such as disjoint-set forests
with union by rank can perform O (V) operations in O(V log V)
time. Thus the total time is O(E log E) = O(E log V).

3. PROPOSED ALGORITHM
We tried to find a algorithm to find minimal spanning tree.
For this, we use the cut property and greedy property of
minimum spanning tree. First of all we make a new set for
each vertex of the graph G(V,E), now as we know that for
each node(pϵV) we have a minimum weight edge which will
lead us to new vertex (qϵV) ,if the node p and q doesn’t belong
to same set, union them. Now repeat these steps for all the
vertices. In worst case it will lead us to n/2 disconnected tree.
Now heapify the remaining edges to select minimum edge
from the rest of the edges then check the corresponding
vertex of the edge belongs to same set or not and if they
belong to different set union them and repeat until we have
only a single set of graph left.

DESCRIPTION WITH EXAMPLE
Let us consider a graph G (V, E) having 8 vertices and 15 edges
and each vertex have its own set, now from the list of vertices

select any arbitrary vertex and search for the minimum edge
from that vertex, lets say in this example we select vertex A
and the minimum edge corresponding to the vertex A is
(A,B)now we find that A and B are in different set so we union
them and form a new set say set 1(White, background 1,
darker 15%).

Now we select vertex B and the minimum edge from B is
(B,C),we check for the set of B and C, as they belong to
different set so we Union them and put them in a new set 2
(White, background 1, darker 25%).
.

Now we choose vertex D and the minimum edge from the
vertex D is (D,G), as D and G belong to different set so we
Union them and put them in a new set say 3(White,
background 1, darker 50%).

Fig .2. After combining set a and H

Fig.3. After combining set B and C

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Big-O_notation
https://en.wikipedia.org/wiki/Binary_logarithm

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 1758
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Now choose the vertex E and the minimum edge from the
vertex E is(E,F), as E and F belong to different set so we Union
them and put them in a new set say 4(White ,Background 1).

Now apply the heapify algorithm to find the least edge and
check whether the nodes containing the edge belongs to same
set or not, if they belong to same set then discard the edge and
also remove from the list of edges otherwise union them and
remove the edge from the set of remaining edges.

Now select the least edge (F,C) which we got after applying
heapify on the remaining edges ,as F and C belong to different
set so union the set F and C. Figure below shows the union of
F and C and put them into set 2.

Again apply heapify algorithm to find the next least weighted
edge and check whether the nodes containing the edge
belongs to same set or not, if they belong to same set then
discard the edge and also remove from the list of edges
otherwise union them and remove the edge from the set of
remaining edges.

Fig.6. After combining set E and F

Table 2: List of Remaining edges Table 3: After applying
heapify on the table 1

Fig.7.After combining the set 2 and 4

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 1759
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Now select the least edge (H,G) which we got after applying
heapify on the remaining edges ,as H and G belong to
different set so union the set H and G. Figure below shows the
union of H and G into the set 1.

Again apply heapify algorithm to find the next least weighted
edge and check whether the nodes containing the edge
belongs to same set or not, if they belong to same set then
discard the edge and also remove from the list of edges
otherwise union them and remove the edge from the set of
remaining edges.

Now select the least edge (C,D) which we got after applying
heapify on the remaining edges ,as C and D belong to different
set so union the set C and D. Figure below shows the union of
C and D.

Now we have left a single set of the entire vertex with some
edges and this is the desire minimal spanning tree.

Table 4: After removing edge (F,C) and
applying heapify again.

Fig.8. After combining set 1 and 3

Fig.9.After combining set 1 and 3

Table:5 After removing edge (H,G) and applying
heapify again.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 1760
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Algorithm
Input: A connected graph G(V,E) where V is set of vertices
and E is set of edges.
Output: Minimum Spanning Tree(MST) of G

1. Create |V| no of sets, Vs, for each vertex of V and empty set

MST for the edges of the output spanning tree
2. for each vertex u into set V:
3. Select the least weighted edge (u, v) from V
4. If set of u not equal to set of v:
5. Union the set of u and v and put the edge (u, v) into MST
set

6. Vs = Vs – 1
7. Remove edge (u, v) from set of edge E
8. End if
9.End for

7. While number of sets Vs greater than one:
8. Select least edge (u, v) from set E
9. If set of u and v are not equal:
10. Union the set of u and v and put the edge (u, v) into MST
set
11. Remove edge (u, v) from set of edge E

12. Vs = Vs – 1

13. End if
14. End While
15. Set MST is desired minimal spanning tree.

4. Data structures
4.1 Heap
In our algorithm we used heap as a tool to find the next
shortest edge from the set of remaining edges, as we know

that we have two types of heap min heap and max heap and
we have used min heap here . We used heap here because
after repeating the step 2-9 in our algorithm it will lead us to
n/2 disjoint graphs so in order to connect the n/2 graph into a
single graph we need (n/2)-1 edges and In best case it could be
the first (n/2)-1 least weighted edges so if we use min heap we
have to apply heapify algorithm only (n/2)-1 time and it will
help us to reduce the time complexity, but in worst case we
have to move through all the remaining edges.

4.2 Union Find
We have union find algorithm to find the sets of vertices so
that we can decide whether they belong to the same or
different set.
In Union-Find:
Find: Determine which subset a particular element is in. This
can be used for determining if two elements are in the same
subset.
Union: Join two subsets into a single subset.

5. Experimental Results
Environment:
Processor Intel(R) Core(TM) i5-4200U CPU @ 1.60 GHz 2.30 GHz
Installed memory (RAM) 4.00 GB (3.89GB usable)
System type: 64-bit Operating System, x64-bit based processor
Windows 10
The instances represent the adjacency matrix of the graphs
In which edge weight 0 represent it is traversing to itself and
1000 represent there is no path between the vertices and the
remaining values represent paths between the vertices

Table 6: Graph Instance (I1) with 9 vertices
vertex 0 1 2 3 4 5 6 7 8

0 0 5 1000 2 4 1000 1000 1000 1000

1 5 0 1000 8 1000 1000 1000 18 1000

2 1000 1000 0 3 1000 1000 1000 1000 7

3 2 8 3 0 1000 1000 6 1000 1000

4 4 1000 1000 1000 0 1000 10 1000 11

5 1000 1000 1000 1000 1000 0 3 15 1000

6 1000 1000 1000 6 10 3 0 1000 1000

7 1000 3 1000 1000 1000 15 1000 0 9

8 1000 1000 7 1000 11 1000 1000 9 0

Table 7: Graph Instance (I2) with 8 vertices

vertex 0 1 2 3 4 5 6 7
0 0 8 1000 1000 1000 1000 1000 4
1 8 0 4 1000 10 7 1000 9
2 1000 4 0 3 1000 3 1000 1000
3 1000 1000 3 0 25 18 2 1000
4 1000 10 1000 25 0 2 7 1000
5 10 7 3 18 2 0 1000 1000
6 1000 1000 1000 2 7 1000 0 3
7 4 9 1000 1000 1000 1000 3 0

Fig.10. Final MST

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 1761
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 Table : Graph Instance (I3) with 14 vertices

Time comparison for each instance
Instance Prims

(in ns)
Kruskal's
(in ns)

MSTH
(in ns)

I1 2089062 4033138 2793251

I2 1436336 3858923 2520475

I3 3432891 5536545 3567747

6. Conclusion

After studying the algorithm and finding the results from the
algorithm we concluded that the algorithm proposed by us is
faster than the kruskal’s algorithm but slower than prim’s
algorithm under some constraints. There will be a great use of
this algorithm in future as it can be used effectively to find the
shortest path between any two places and also to find the most
cost efficient path of all. Thus if studied further and done
some research a lot of scope is there in this particular domain.

 7. References
[1]https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_alg
orithm
[2] https://en.wikipedia.org/wiki/Prim%27s_algorithm
[3] https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
[4] Kruskal, J. B. ,"On the shortest spanning subtree of a
graph and the traveling salesman problem". Proceedings of
the American Mathematical Society. Vol. 7,pp 48–50 ,1956.

Maumita Chakraborty received her
B.Tech. degree in Information Technology
from University of Kalyani, India, and her
M.E. degree in Software Engineering from
Jadavpur University, India. She is currently
pursuing her Ph.D. degree at the
Department of Computer Science and
Engineering, University of Calcutta, India.
She is currently working as an Assistant
Professor of the Department of Information
Technology, Institute of Engineering and
Management, Kolkata, India. Her major
research interests include Graph theory
and its applications, Data structure and
algorithms, Networking, and Mobile
computing

Rahul Singh is currently pursuing his B.Tech
degree at the Department of Information
Technology, Institute of Engineering
&Management, Kolkata, India.

Ruchi Mehta is currently pursuing her B.Tech
degree at the Department of Information
Technology, Institute of Engineering
&Management, Kolkata, India.

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Joseph_Kruskal
https://en.wikipedia.org/wiki/Proceedings_of_the_American_Mathematical_Society
https://en.wikipedia.org/wiki/Proceedings_of_the_American_Mathematical_Society

	1 Introduction
	2. related work
	2.1 PRIM’S ALGORITHM:
	DESCRIPTION WITH EXAMPLE

