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Abstract— Minimum spanning trees are one of the most important primitives used in graph algorithms. They find applications in numerous 
fields ranging from taxonomy to image processing to computer networks. In this paper, we present a different approach or algorithm to find 
the minimum spanning tree (MST) for large graphs based on boruvka’s algorithm. We analyze the CPU timing of the algorithm and 
compare it with the existing algorithms of finding MST under certain assumptions. Finally, we compare the performance of the three 
algorithms on a set of graph instances. 
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1 INTRODUCTION                                                                     
Graph is a set of edges and vertices represented as G (V, E) 

and tree is a connected graph having n vertices and n-1 edges. 
Minimum spanning tree is a connected subset of graph having 
n vertices and n-1 edges so basically it is a tree but the total 
weight of the minimum spanning tree is always less than or 
equal to weight of  any possible subset of connected graph 
having n vertices and n-1 edges which is a tree. 
 
Here we are showing some application for minimum spanning 
trees. One example would be a telecommunications company 
or electrical companies which are trying to lay off cables in 
city or town. To connect the whole city or the part of the city, 
there must be a graph representing which points are 
connected by which one along the direction of some path. 
Some of those paths might be more expensive, because they 
are longer, or might be some difficulty in laying the cables; 
these paths would be represented by edges with larger 
weights. Currency is an acceptable unit for edge weight graph 
– there is no requirement for edge lengths to obey normal 
rules of geometry such as the triangle inequality. A spanning 
tree for that graph would be a subset of those paths that has no 
cycles but still connects to every point directly or via some 
other point; there might be several spanning trees possible. 
A minimum spanning tree would be one with the lowest total 
cost, thus would represent the least expensive path for laying 
the cable. Boruvka’s algorithm[1] was also invented to 
construct an efficient electric network.  
The proposed algorithm is the implementation of Boruvka’s 
algorithm and hence could be said as the extension of the 
mentioned algorithm. 

2. RELATED WORK 
2.1    PRIM’S ALGORITHM: 
In computer science, Prim's algorithm [2] is basically a greedy 
algorithm that is used to find a minimum spanning tree for 
a weighted undirected graph. What we can say is that it finds that 
subset of edges forming a tree that includes all the vertices, such that 
the total weight of edges is kept minimum. 
The algorithm starts by taking any arbitrary vertex as the starting 
vertex and then adding the edges in such a manner that they produce 
the minimum weight. 

The algorithm may informally be described as performing the 
following steps: 

1. Initialize a tree with a single vertex, chosen arbitrarily 
from the graph. 

2. Grow the tree by one edge: of the edges that connect 
the tree to vertices not yet in the tree, find the 
minimum-weight edge, and transfer it to the tree. 

3. Repeat step 2 (until all vertices are in the tree). 

In more detail, it may be implemented following the pseudo 
code below [2]. 

1. Associate with each vertex v of the graph a 
number C[v] (the cheapest cost of a connection to v) 
and an edge E[v] (the edge providing that cheapest 
connection). To initialize these values, set all values 
of C[v] to +∞ (or to any number larger than the 
maximum edge weight) and set each E[v] to a 
special flag value indicating that there is no edge 
connecting v to earlier vertices. 

2. Initialize an empty forest F and a set Q of vertices that 
have not yet been included in F (initially, all vertices). 

3. Repeat the following steps until Q is empty: 
a. Find and remove a vertex v from Q having 

the minimum possible value of C[v] 
b. Add v to F and, if E[v] is not the special flag 

value, also add E[v] to F 
c. Loop over the edges vw connecting v to other 

vertices w. For each such edge, if w still 
belongs to Q and vw has smaller weight 
than C[w], perform the following steps: 

i. Set C[w] to the cost of edge vw 
ii. Set E[w] to point to edge vw. 

4. Return F 

As described in the above pseudo code, the starting vertex for 
the algorithm will be chosen arbitrarily, because the first 
iteration of the main loop of the algorithm will have a set of 
vertices in Q that all have equal weights, and the algorithm 
will automatically start a new tree in F when it completes a 
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spanning tree of each connected component of the input 
graph. The algorithm may be modified to start with any 
particular vertex s by setting C[s] to be a number smaller than 
the other values of C (for instance, zero), and it may be 
modified to only find a single spanning tree rather than an 
entire spanning forest (matching more closely the informal 
description) by stopping whenever it encounters another 
vertex flagged as having no associated edge. 

Different variations of the algorithm differ from each other in 
how the set Q is implemented: as a simple linked 
list or array of vertices, or as a more complicated priority 
queue data structure. This choice leads to differences in 
the time complexity of the algorithm. In general, a priority 
queue will be quicker at finding the vertex v with minimum 
cost, but will entail more expensive updates when the value 
of C[w] changes. 

TIME COMPLEXITY: 
The time complexity of Prim's algorithm depends on the 
data structures used for the graph and for ordering the 
edges by weight, which can be done using a priority 
queue. 
The following table shows the typical choices:  

      
 

 

 

 

 

 

 

 

A simple implementation of Prim's, using an adjacency 
matrix or an adjacency list graph representation and linearly 
searching an array of weights to find the minimum weight 
edge, to add requires O(|V|2) running time. However, this 
running time can be greatly improved further by 
using heaps to implement finding minimum weight edges in 
the algorithm's inner loop. 

A first improved version uses a heap to store all edges of the 
input graph, ordered by their weight. This leads to an O(|E| 
log |E|) worst-case running time. But storing vertices instead 
of edges can improve it still further. The heap should order the 
vertices by the smallest edge-weight that connects them to any 
vertex in the partially constructed minimum spanning 
tree (MST) (or infinity if no such edge exists). Every time a 
vertex v is chosen and added to the MST, a decrease-key 

operation is performed on all vertices w outside the partial 
MST such that v is connected to w, setting the key to the 
minimum of its previous value and the edge cost of (v,w). 

Using a simple binary heap data structure, Prim's algorithm 
can now be shown to run in time O(|E| log |V|) where |E| is 
the number of edges and |V| is the number of vertices. Using 
a more sophisticated Fibonacci heap, this can be brought 
down to O(|E| + |V| log |V|), which is asymptotically 
faster when the graph is dense enough that |E| is ω(|V|), 
and linear time when |E| is at least |V| log |V|. For graphs of 
even greater density (having at least |V|c edges for 
some c > 1), Prim's algorithm can be made to run in linear time 
even more simply, by using a d-ary heap in place of a 
Fibonacci heap. 

2.2 KRUSKAL’S ALGORITHM 
Kruskal's algorithm [3] is a minimum-spanning-tree 
algorithm which finds an edge of the least possible weight that 
connects any two trees in the forest. It is a greedy 
algorithm in graph theory as it finds a minimum spanning 
tree for a connected weighted graph adding increasing cost 
arcs at each step .This means it finds a subset of the edges that 
forms a tree that includes every vertex, where the total weight 
of all the edges in the tree is minimized. If the graph is not 
connected, then it finds a minimum spanning forest (a minimum 
spanning tree for each connected component). 
This algorithm first appeared in Proceedings of the American 
Mathematical Society, pp. 48–50 in 1956, and was written 
by Joseph Kruskal [4]. 

Algorithm 
1. Create a forest F (a set of trees), where each vertex in the 
graph is a separate tree. 
2. Create a set S containing all the edges in the graph 
3. While S is nonempty and F is not yet spanning 
4. Remove an edge with minimum weight from S 
5. If the removed edge connects two different trees then add it 
to the forest F, combining two trees into a single tree 
 
6. At the termination of the algorithm, the forest forms a 
minimum spanning forest of the graph. If the graph is 
connected, the forest has a single component and forms a 
minimum spanning tree 

Pseudo code [3] 
The following code is implemented with disjoint-set data 
structure: 
KRUSKAL (G): 
1. A=∅ 
2. for each v ∈ G.V: 
3. MAKE-SET (v) 

[2] Table 1: Time complexity using different data structure 
Minimum edge weight data 
structure 

Time complexity 

adjacency  matrix, searching O(|V|2) 

binary heap and adjacency 
list 

O( ( |V| + |E| ) log |V|) = O( 
|E| log |V| ) 

Fibonacci 
heap and adjacency list 

O( |E| + |V| log |V| ) 
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4.  For each (u, v) in G.E ordered by weight (u, v), 
increasing 
5. If FIND-SET (u) ≠ FIND-SET (v): 
6. A = A ∪ {(u, v)} 
7. UNION (u, v) 
8. Return A 

Complexity 
Kruskal's algorithm can be shown to run in O(E log E) time, or 
equivalently, O(E log V) time, where E is the number of edges 
in the graph and V is the number of vertices, all with simple 
data structures. These running times are equivalent because: 

• E is at most V2 and log V2 = 2 logV  is O(log V). 
• Each isolated vertex is a separate component of the 

minimum spanning forest. If we ignore isolated vertices 
we obtain V ≤ 2E, so log V is O(log E). 

We can achieve this bound as follows: first sort the edges by 
weight using a comparison sort in O(E log E) time; this allows 
the step "remove an edge with minimum weight from S" to 
operate in constant time. Next, we use a disjoint-set data 
structure (Union & Find) to keep track of which vertices are in 
which components. We need to perform O(V) operations, as in 
each iteration we connect a vertex to the spanning tree, two 
'find' operations and possibly one union for each edge. Even a 
simple disjoint-set data structure such as disjoint-set forests 
with union by rank can perform O (V) operations in O(V log V) 
time. Thus the total time is O(E log E) = O(E log V). 

3. PROPOSED ALGORITHM 
We tried to find a algorithm to find minimal spanning tree. 
For this, we use the cut property and greedy property of 
minimum spanning tree. First of all we make a new set for 
each vertex of the graph G(V,E), now  as we know that for 
each node(pϵV) we have a minimum weight edge which will 
lead us to new vertex (qϵV) ,if the node p and q doesn’t belong 
to same set, union them. Now repeat these steps for all the 
vertices. In worst case it will lead us to n/2 disconnected tree. 
Now heapify the remaining edges to select minimum edge 
from the rest of the edges  then check the corresponding 
vertex of the edge belongs to same set or not and if they 
belong to different set union them and repeat until we have 
only a single set of graph left. 

DESCRIPTION WITH EXAMPLE 
Let us consider a graph G (V, E) having 8 vertices and 15 edges 
and each vertex have its own set, now from the list of vertices 

select any arbitrary vertex and search for the minimum edge 
from that vertex, lets say in this example we select vertex A 
and the minimum edge corresponding to the vertex A is 
(A,B)now we find that A and B are in different set so we union 
them and form a new set say set  1(White, background 1, 
darker 15%). 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
Now we select vertex B and the minimum edge from B is 
(B,C),we check for the set of B and C, as they belong to 
different set so we Union them and put them in a new set 2 
(White, background 1, darker 25%). 
. 

 

  
 
 
 
 
 
                                      

Now we choose  vertex D and the minimum edge from the 
vertex D is (D,G), as D and G belong to different set so we 
Union them and put them in a new set say 3(White, 
background 1, darker 50%). 
 

 

Fig .2. After combining set a and H 

 

Fig.3. After combining set B and C 
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Now choose the vertex E and the minimum edge from the 
vertex E is(E,F), as E and F belong to different set so we Union 
them and put them in a new set  say 4(White ,Background 1). 

 

 

 

 

 

 
 
Now apply the heapify algorithm to find the least edge and 
check whether the nodes containing the edge belongs to same 
set or not, if they belong to same set then discard the edge and 
also remove from the list of edges otherwise union them and 
remove the edge from the set of remaining edges. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now select the least  edge (F,C) which we got after applying 
heapify on the remaining edges ,as F and C belong to different 
set so union the set F and C. Figure below shows the union of 
F and C  and put them into set 2. 

 

 

 

 

 

 

Again apply heapify algorithm to find the next least weighted 
edge and check whether the nodes containing the edge 
belongs to same set or not, if they belong to same set then 
discard the edge and also remove from the list of edges 
otherwise union them and remove the edge from the set of 
remaining edges. 

 
 
 
 
 
 
 
 

 

Fig.6. After combining set E and F 

Table 2: List of Remaining edges      Table 3: After applying                                           
heapify on the table 1 

                                     

 

Fig.7.After combining the set 2 and 4 
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Now select the least  edge (H,G) which we got after applying 
heapify on the remaining edges ,as H and G belong to 
different set so union the set H and G. Figure below shows the 
union of H and G into the set 1. 

 

 

 

 

 

 

 

 
Again apply heapify algorithm to find the next least weighted 
edge and check whether the nodes containing the edge 
belongs to same set or not, if they belong to same set then 
discard the edge and also remove from the list of edges 
otherwise union them and remove the edge from the set of 
remaining edges. 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Now select the least  edge (C,D) which we got after applying 
heapify on the remaining edges ,as C and D belong to different 
set so union the set C and D. Figure below shows the union of 
C and D. 

 

 

 

 

 

 

 

 

Now we have left a single set of the entire vertex with some 
edges and this is the desire minimal spanning tree. 

 

 

 

 

 

Table 4: After removing edge (F,C) and 
applying heapify again. 

 

 

 

Fig.8. After combining set 1 and 3 

 

Fig.9.After combining set 1 and 3 

Table:5 After removing edge (H,G) and applying 
heapify again. 
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Algorithm 
Input: A connected graph G(V,E) where V  is set of vertices 
and E is set of edges. 
Output: Minimum Spanning Tree(MST) of G 

1.  Create |V| no of sets, Vs, for each vertex of V and empty set 

MST for the edges of the output spanning tree 
2.   for each vertex u into set V: 
3.   Select the least weighted edge (u, v) from V 
4.   If set of u not equal to set of v: 
5.   Union the set of u and v   and put the edge (u, v) into MST 
set      

6.  Vs = Vs – 1 
7. Remove edge (u, v) from set of edge E 
8. End if 
9.End for 

7.   While number of sets Vs greater than one: 
8.   Select least edge (u, v) from set E 
9.   If set of u and v are not equal: 
10.  Union the set of u and v   and put the edge (u, v) into MST 
set 
11. Remove edge (u, v) from set of edge E 

12. Vs = Vs – 1 

13. End if 
14. End While 
15. Set MST is desired minimal spanning tree. 

 

4. Data structures 
4.1 Heap 
In our algorithm we used heap as a tool to find the next 
shortest edge from the set of remaining edges, as we know 

that we have two types of heap min heap and max heap and 
we have used min heap here . We  used heap here because 
after repeating the step 2-9 in our algorithm it will lead us to 
n/2 disjoint graphs so in order  to connect the n/2 graph into a 
single graph we need (n/2)-1 edges and  In best case it could be 
the first (n/2)-1 least weighted edges so if we use min heap we 
have to apply heapify algorithm  only (n/2)-1 time and it will 
help us to reduce the time complexity, but in worst case we 
have to move through all the remaining edges. 

4.2 Union Find 
We have union find algorithm to find the sets of vertices so 
that we can decide whether they belong to the same or 
different set. 
In Union-Find: 
Find: Determine which subset a particular element is in. This 
can be used for determining if two elements are in the same 
subset. 
Union: Join two subsets into a single subset. 

5. Experimental Results 
Environment: 
Processor Intel(R) Core(TM) i5-4200U CPU @ 1.60 GHz 2.30 GHz 
Installed memory (RAM) 4.00 GB (3.89GB usable) 
System type: 64-bit Operating System, x64-bit based processor 
Windows 10 
The instances represent the adjacency matrix of the graphs 
In which edge weight 0 represent it is traversing to itself and 
1000 represent there is no path between the vertices and the 
remaining values represent paths between the vertices 
 

Table 6: Graph Instance (I1) with 9 vertices 
vertex 0 1 2 3 4 5 6 7 8 

0 0 5 1000 2 4 1000 1000 1000 1000 

1 5 0 1000 8 1000 1000 1000 18 1000 

2 1000 1000 0 3 1000 1000 1000 1000 7 

3 2 8 3 0 1000 1000 6 1000 1000 

4 4 1000 1000 1000 0 1000 10 1000 11 

5 1000 1000 1000 1000 1000 0 3 15 1000 

6 1000 1000 1000 6 10 3 0 1000 1000 

7 1000 3 1000 1000 1000 15 1000 0 9 

8 1000 1000 7 1000 11 1000 1000 9 0 

 
Table 7: Graph Instance (I2) with 8 vertices 

vertex 0 1 2 3 4 5 6 7 
0 0 8 1000 1000 1000 1000 1000 4 
1 8 0 4 1000 10 7 1000 9 
2 1000 4 0 3 1000 3 1000 1000 
3 1000 1000 3 0 25 18 2 1000 
4 1000 10 1000 25 0 2 7 1000 
5 10 7 3 18 2 0 1000 1000 
6 1000 1000 1000 2 7 1000 0 3 
7 4 9 1000 1000 1000 1000 3 0 

 

Fig.10. Final MST 
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         Table : Graph Instance (I3) with 14 vertices 

 

Time comparison for each instance 
Instance Prims 

(in ns) 
Kruskal's 
(in ns) 

MSTH 
(in ns) 

I1 2089062 4033138 2793251 

I2 1436336 3858923 2520475 

I3 3432891 5536545 3567747 

 

6. Conclusion  

After studying the algorithm and finding the results from the 
algorithm we concluded that the algorithm proposed by us is 
faster than the kruskal’s algorithm but slower than prim’s 
algorithm under some constraints. There will be a great use of 
this algorithm in future as it can be used effectively to find the 
shortest path between any two places and also to find the most 
cost efficient path of all. Thus if studied further and done 
some research a lot of scope is there in this particular domain. 
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